

Mark Scheme (Results)

Summer 2013

International GCSE Mathematics (4MBO) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036382
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
- Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
- Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o awrt answers which round to....
- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

<u>International GCSE Maths B</u> <u>Summer 2013 – Mark Scheme</u>

Question Number	Working	Notes		Mark
1	Rearranging so that the coefficient of <i>x</i> or <i>y</i> is the same in both eqns			
	OR			
	isolating x or y	M1		
	Subtracting or adding equations			
	OR			
	substituting expression for <i>x</i> or <i>y</i> to obtain <i>y</i> or <i>x</i>	M1dep		
	NB: Allow 1 slip <i>total</i> for both M marks.	т о. о р		
	x = 4	A1		
	<i>y</i> = 1	A1		
	eg $5y = 5$ (M1) then $y = 1$ (A1) then $3x - 2(1) = 10$ (M1dep) then $x = 4$ (A1) OR			
	5x = 20 (M1) then $x = 4$ (A1) the $3(4) - 2y = 10$ (M1dep) then $y = 4$ (A1)		4	4

Question Number	Working	Notes	Mark
2(a)	$\angle CAB = 70^{\circ}$ reason: isosceles triangle and $\angle DAF = 50^{\circ}$ reason: alternate segment theorem	B1	
	OR $\angle ECD = 60^{\circ}$ reason: angles on straight line		
	OR $\angle CDA = 70^{\circ}$ reason: alternate segment theorem	B1	
	leading to $\angle CAD = 60^{\circ}$ reason: angles on straight line or angles of triangle	B1	
	OR Taking <i>O</i> to be the centre of circle $\angle COA = 140^{\circ}$ (angles of a quadrilateral) $\angle BAO = \angle BCO = 90^{\circ}$ (angles between tangent and radius)	B1	
	then $\angle CDA = 70^{\circ}$ angle at centre	B1	

	leading to $\angle CAD = 60^{\circ}$ angles of a triangle	B1		
	NB: At least TWO reasons required for full marks (3 marks) plus all angles correct.			
	Special Case 1: B1 (1 mark) only if no reasons given but all angles correct.			
	Special Case 2: B1 B1 (2 marks) for <i>one</i> reason given and all angles correct.			
	10		3	
2(b)	$\frac{AD}{\sin 50} = \frac{6}{\sin" \angle CAD"}$	M1		
	$\therefore AD = \frac{6 \times \sin 50}{\sin'' \angle CAD''}$	M1dep		
	AD = 5.31 cm	A1	2	6
			3	6

Question Number	Working	Notes		Mark
3(a)	$\frac{dy}{dx} = -1 - 2x = 0 \text{ (1 term correct in a linear exp}$ in x)	M1		
	$\therefore x = -\frac{1}{2}$	A1		
	Substituting "x" in y	M1dep		
	$\therefore y = 6\frac{1}{4}$	A1	4	
3(b)(i)	$\frac{dy}{dx}(x=-1) = +1,$ $\frac{dy}{dx}(x=0) = -1$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} \ (x=0) = -1$	B1		
3(b)(ii)	Since gradients are +1, 0 and -1 at $x = -1$, -1/2 and 0 respecitively			
	$\therefore \left(-\frac{1}{2}, 6\frac{1}{4}\right) \text{is a maximum (correct conclusion)}$	B1		
	NB: All 3 values of $\frac{dy}{dx}$ must be used for a			
	correct conclusion			

OR			
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2$			
$\therefore \left(-\frac{1}{2}, 6\frac{1}{4}\right) \text{is a maximum (correct conclusion)}$	B1	2	6

Question Number	Working	Notes		Mark
4(a)	$n \ (F \cup M \cup V)'$ or $n \ F' \cap M' \cap V'$ or Number of people not buying F, M or V or number of people not buying anything	B1	1	
4(b)	F V 30-5-x-x 5 x 30-5-x-x 90 M	B2 - 1eeoo	2	
4(c)	$F \cap V' \cap M$ or $(F \cap V') \cap (M \cap V')$ (o.e)	B1	1	
4(d)	"90 + (60-5- x - x) + (20-5- x - x) + (30- x - x -5) + 5 + x + x + x " = 172 (an attempt to add all of the values from <i>their</i> Venn diagram.			
	allowing 1 slip	M1		
	fully correct	M1dep		
	(NB: there must be at least TWO entries in the Venn diagram in (b otherwise award no marks			
	x = 6	A1	3	7

Question Number	Working	Notes		Mark
5(a)	3x+5 = 2x			
	$\frac{1}{x+3} = \frac{1}{3}$	M1		
	3(3x + 5) = 2x(x + 3) (Removing the	N 44 - I		
	denominators.)	M1dep		
	$2x^2 - 3x - 15 = 0$ (correct conclusion)	A1	3	
5(b)	$x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-15)}}{2 \times 2}$	M1		
	(Fully correct substitution into formula)			
	x = awrt 3.6 (or better 3.589)	A1		
	$3 \times "3.589" + 5$ (substituting <i>their x</i> into (3 <i>x</i> +5)	M1		
	15.8 km	A1ft	4	7

Question	Working	Notes		Mark
Number 6(a)	$\mathbf{M} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$	B2 -1eeoo		
	Special Case: Award B1 (1 mark) for a (1x3) matrix		2	
6(b)	Marks for value of a (1, 1): 6 + 4 = a a = 10	M1 A1		
	Marks for b (1, 2): $2a-2 + 2-4b = 12$ b = 2	M1 A1		
	Marks for c (2, 1): $2c-2 + 2-5d = 2-c$ c = 4	M1 A1		
	Marks for d (2, 2): 4 + 2 = 3d d = 2	M1 A1	8	10

Question Number	Working	Notes		Mark
7(a)	Yellow			
	1 2 2 2 3 6	B2		
	1 2 3 3 3 4 7 2 3 4 4 4 5 8	-1eeoo		
	2 3 4 4 4 5 8 3 4 5 5 5 6 9			
	4 5 6 6 6 7 10 5 6 7 7 7 8 11			
	6 7 8 8 8 9 12			
	Blue		2	
7(b)(i)	1/36 or 0.0278	B1ft		
7(b)(ii)	10/36 or 0.278	B1ft	2	
	Probabilities are ft from their table			
7(c)(i)	$P(\text{score=2}) \times P(\text{score=2}) = \frac{1}{36} \times \frac{1}{36}$	M1		
	$\frac{1}{1296}$ or 0.0008	A1		
7(c)(ii)	P(total = 9) = {P(4 then 5) + P(5 then 4)} + {P(3 then 6) + P(6 then 3)} + {P(2 then 7) + P(7 then 2)} $= \frac{2 \times \left(\frac{5}{36} \times \frac{5}{36}\right) + \left(\frac{4}{36} \times \frac{5}{36} \times \frac{5}{36} \times \frac{4}{36}\right)}{+ \left(\frac{1}{36} \times \frac{6}{36} \times \frac{6}{36} \times \frac{1}{36}\right)}$			
	2 {Grand Total probs} correct All {Grand Total probs} correct	B1ft B1ft		
	NB: B marks are ft from <i>their</i> table			
	All "correct" Grand Totals added	M1		
	$=\frac{102}{1296}$ or $\frac{51}{648}$ or $\frac{17}{216}$ or 0.079	A1	6	10
	Special Case: $\left(\frac{5}{36} \times \frac{5}{36}\right) + \left(\frac{4}{36} \times \frac{5}{36}\right) + \left(\frac{1}{36} \times \frac{6}{36}\right) + \left($			

Question Number	Working	Notes		Mark
8(a)	Penalise labelling ONCE only in this QUESTION (parts a-d)			
	Δ <i>ABC</i> drawn and labelled.	B1	1	
8(b)	$\Delta DEF \text{ drawn} \left(\Delta DEF = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \right)$	B2 -1eeoo	2	
8(c)	$\left(\Delta PQR = \begin{pmatrix} 4 & 4 & 8 \\ -4 & -8 & -12 \end{pmatrix}\right)$	B2 -1eeoo		
	If triangle not plotted then you may still award the available B2 marks for their coordinates of the vertices			
	ΔPQR drawn	B1ft	3	
0(1)	NB: fts are from <i>their</i> matrix multiplication	D4		
8(d)	270° (rotation) OR -90° (rotation) OR 90° clockwise	B1		
	(Enlargement) scale factor 2,	B1		
	About origin (o.e)	B1	3	9

Question Number	Working	Notes		Mark
	$\overrightarrow{OC} = \mathbf{a} + 2\mathbf{b}$	B1		
9(a)(ii)	\overrightarrow{CB} = - (" a + 2 b ") + 4 b	M1		
	$\overrightarrow{CG} = \frac{3}{5}$ "(2b – a)"	M1dep		
	$\frac{3}{5}(2\mathbf{b} - \mathbf{a}) \tag{oe}$	A1	4	
9(b)(i)	$\overrightarrow{FG} = \frac{3}{5}$ "(a + 2b)" + " $\frac{3}{5}$ (2b – a)"			
	$=\overrightarrow{FC}+\overrightarrow{CG}$	M1		
	$\overrightarrow{FG} = \frac{12}{5}\mathbf{b}$ A1 ft	A1ft		
	NB: Only apply ft if their vectors correctly arrive at $\overrightarrow{FG} = "\lambda" \mathbf{b}$			

	OR			
	$\Delta s \frac{FCG}{OCB}$ are similar, $\frac{FC}{OC} = \frac{CG}{CB} = \frac{FG}{OB} = \frac{3}{5}$	M1		
	$\therefore \overrightarrow{FG} = \frac{3}{5} \times 4\mathbf{b}$	A1ft		
	$\lambda = \frac{12}{5} $ (cao)	A1	4	
9(c)	From given ratios and (b)(i), as:			
	$\Delta s \frac{FCG}{OCB}$ are similar, $\frac{FC}{OC} = \frac{CG}{CB} = \frac{FG}{OB} = \frac{3}{5}$	M1ft		
	OR			
	$FG: OB = \frac{12}{5}: 4 = 12: 20 = 3:5$			
	leading to $ \Delta OCB : \Delta FCG = 5^2 : 3^2$ (o.e)	M1dep		
	(so the M marks can be "fts")			
	25 : 9	A1		
	NB: Sight of vector division, eg $\frac{\overrightarrow{FG}}{\overrightarrow{OB}} = \frac{\left(\frac{12}{5}\mathbf{b}\right)}{4\mathbf{b}}$			
	scores M0 M0 A0		3	
9(d)	25 25		3	
/(G)	$ \Delta OCB = \frac{25}{9} \times \Delta FCG = \frac{25}{9} \times 18 $ (=50)	M1		
	$\Delta OCB = 50 \text{ (cao)}$	A1	2	13

Question	Working	Notes		Mark
Number				
10(a)	Height of hemispherical top = $20 - 2r = h + r$	B1		
	correct conclusion		1	
10(b)	$V = \pi h r^2 + \frac{1}{2} \times \frac{4}{3} \pi r^3 \text{(one volume correct)}$	M1		
	(both volumes correct)	M1dep		
	$V = \pi (20 - 3r)r^2 + \frac{1}{2} \times \frac{4}{3} \pi r^3 \text{ (eliminating } h\text{)}$	M1dep		
	$\therefore \frac{V}{\pi} = y = r^2 \left(20 - \frac{7}{3}r \right) $ (correct conclusion	A1	4	

40()	04	D.1		
10(c)	61	B1		
	170 or 171	B1		
	216	B1		
	Note: Penalise ncc ONCE		3	
10(d)	correct curve drawn	В3	J	
10(0)	Concot darve drawn	-1eeoo		
	-1 mark for each of the following:	- 16600		
	incorrect/non-uniform scale			
	straight line segments			
	1			
	• each point missed (± ½ small square)			
	each missed segment			
	each point not plotted			
	 each point incorrectly plotted (± ½ small 			
	square)			
	tramlines			
	 very poor curve eg line too thick 		3	
10(e)	$V_{\text{max}} \approx 218(\pm 1)\pi$			
	(condone missing π)	B1ft	1	
10(f)	Indication of looking for range	M1		
(.)				
	$5.1(\pm 0.1) \le r \le 6.3(\pm 0.1)$			
	OR			
	5.1 – (to) 6.3	A1ft		
	3.1 – (10) 0.3	AIII		
	Note: If there is no indication on their diagram			
	(eg a horizontal line or vertical lines) and they			
	have an incorrect inequality eg "5.7 $\geq r$ and $r \leq$			
	6.3", then award M0 A0.			
	A correct inequality of			
	A correct inequality eg			
	$5.1(\pm 0.1) \le r \le 6.3(\pm 0.1)$ by itself scores M1			
	A1		2	14

Question Number	Working	Notes		Mark
11(a)	Penalise incorrect rounding ONCE.			
	$\sin 25 = \frac{5}{BE}$	M1		
	<i>BE</i> = 11.831 cm -> 11.8 cm	A1	2	
11(b)	X is a pointt on DC so that EX is perpendicular to DC so $DX = 3$ cm	B1		
	$ED = \sqrt{(12^2 + "3"^2)} (= \sqrt{153})$ $ED = 12.3693 \rightarrow 12.4 \text{ cm}$	M1		
		A1	3	
11(c)	$\sin 30 = \frac{8}{BD}$ (BD= 16) "12.3693" ² = "11.831" ² + "16" ² - 2×"11.831"×"16"×cos ∠EBD	M1		
	$\therefore \angle EBD = \cos^{-1} \left(\frac{"11.831"^2 + "16"^2 - "12.3693"^2}{2 \times "11.831" \times "16"} \right)$	M1dep		
	$\angle EBD$ = 50.074 -> 50.1° , 50.2° NB: Watch for an answer of $\angle EBD$ = 129 or 130 which usually means a score of M1 M1 M0 A0.	M1dep		
		A1		
			4	
11(d)	<u>ACDE:</u> $ACDE = \frac{1}{2} \times (8+5) \times 12 \ (=78)$	M1		
	$ACDE = 78 \text{ cm}^2$	A1		
	$\Delta \underline{BED:} \therefore \Delta BED = \frac{1}{2} \times "11.831" \times "16" \times \sin" 50.075"$	M1		
	OR (Heron's formula) $s = \frac{"12.369" + "11.831" + "16"}{2} (= 20.1)$ $\Delta BED = \sqrt{20.1 \times (20.1 - "12.369") \times (20.1 - "11.831") \times (20.1 - "16")}$	M1		
	$\angle EDB = 47.182^{\circ}$ \therefore $\angle DEB = 82.744^{\circ}$ OR Sine Rule for $\therefore \Delta BED = \frac{1}{2} \times "12.369" \times "11.831" \times \sin"82.744"$	M1		
	ΔBED = awrt 72, 73 (eg 72.42, 72.584 cm ²)	A1		

Required Surface Area = 150 , 151 cm ²	A1 !	5 14

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UG036382 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

